Parallel nano-Differential Scanning Calorimetry: A New Device for Combinatorial Analysis of Complex nano-Scale Material Systems

نویسندگان

  • Patrick James McCluskey
  • Joost J. Vlassak
چکیده

A new device is presented for the combinatorial analysis of complex nano-scale material systems. The parallel nano-differential scanning calorimeter (PnDSC) is a micro-machined array of calorimetric cells. This new approach to combinatorial calorimetry greatly expedites the analysis of nano-scale material thermal properties. A power-compensation differential scanning calorimetry measurement is described. The scanning calorimetry capability of the PnDSC is demonstrated by a specific heat measurement of an amorphous equiatomic NiTi thin film. Introduction Differential scanning calorimetry (DSC) is a primary technique for measuring the thermal properties of materials. A typical DSC system requires relatively large amounts of test material, making thermal measurements on nano-scale samples difficult if not impossible. Thus, while traditional DSC has proved a very useful technique, its application in nanotechnology, where sample sizes can be very small, is rather limited. Since the properties of materials on the nano-scale may differ significantly from their bulk counterparts [1], a DSC system that is sensitive enough to probe nano-scale quantities is desirable. Furthermore, traditional DSC systems are limited to taking one measurement at a time, and a new sample must be loaded between each measurement. This severely limits the use of a traditional DSC in combinatorial studies at the nanoscale. To obtain reasonable precision on thermal properties as a function of composition many samples must be measured. Anything beyond a binary material system quickly involves unreasonable amounts of time to perform a full analysis. To improve these limitations, we have developed a parallel nano-differential scanning calorimeter (PnDSC) that combines DSC and combinatorial analysis in a novel way. This system is ideal for studying complex material systems. The heart of the PnDSC measurement system is a micro-machined, 5X5 array of calorimetric cells. The PnDSC and complimentary measurement system reduce the analysis time of complex nano-scale material systems by at least an order of magnitude. Physical description The PnDSC is a 5x5 array of calorimetric cells supported by a square Si frame. A thin (~ 100 nm) silicon nitride film is continuous across the surface of the device. Portions of this film are freestanding, creating the membrane of the calorimetric cell. The membranes are positioned uniformly across the device. Each cell has planar dimensions of approximately 2.5 x 5 mm. A thin-film (~ 150 nm) metal strip (width ~ 400 μm), typically W, patterned on the membrane serves as a heater and resistive thermistor in a four-point measurement scheme. Probes patterned from the same metallization layer, attach close to the ends of the thermistor. The individual cells of the PnDSC are largely

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Antimicrobial Poly (Lactic Acid)/Nano-Composite Films with Silver and Zinc Oxide Nanoparticles

Antimicrobial active films based on poly (lactic acid) (PLA) were prepared with nano-silver (nano-Ag) and nano-zinc oxide (nano-ZnO) using a solvent volatilizing method. The films were characterized for mechanical, structural, thermal, physical and antimicrobial properties. Scanning electron microscopy (SEM) images characterized the fracture morphology of the films with different contents of na...

متن کامل

Surveying the effects of silver nanoparticle on thermal properties of some calyx [4]arene compounds by Differential Scanning Calorimetry (DSC)

One of the best and the most active ways for surveying thermal behaviour of materials is using differential scanning calorimetry. In this paper, the authors have studied thermal behaviour for Schiff base ligand and their synthesized Cobalt, Nickel complexes. In this method, the sample is opposed to a controlled temperature change and its physical properties. Here we studied melting point and Tg...

متن کامل

Surveying the effects of silver nanoparticle on thermal properties of some calyx [4]arene compounds by Differential Scanning Calorimetry (DSC)

One of the best and the most active ways for surveying thermal behaviour of materials is using differential scanning calorimetry. In this paper, the authors have studied thermal behaviour for Schiff base ligand and their synthesized Cobalt, Nickel complexes. In this method, the sample is opposed to a controlled temperature change and its physical properties. Here we studied melting point and Tg...

متن کامل

Fibrillation of Flax and Wheat Straw Cellulose: Effects on Thermal, Morphological, and Viscoelastic Properties of Poly(vinylalcohol)/fibre Composites

Nano-fibrillated cellulose was produced from flax and wheat straw cellulose pulps by high pressure disintegration. The reinforcing potential of both disintegrated nano-celluloses in a polyvinyl-alcohol matrix was evaluated. Disintegration of wheat straw was significantly more time and energy consuming. Disintegration did not lead to distinct changes in the degree of polymerization; however, the...

متن کامل

Kinetics of solid-gas reactions characterized by scanning AC nano- calorimetry with application to Zr oxidation

Scanning AC nano-calorimetry is a recently developed experimental technique capable of measuring the heat capacity of thin-film samples of a material over a wide range of temperatures and heating rates. Here we describe how this technique can be used to study solid-gas phase reactions by measuring the change in heat capacity of a sample during reaction. We apply this approach to evaluate the ox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006